Crystal structures of murine norovirus-1 RNA-dependent RNA polymerase.
نویسندگان
چکیده
Norovirus is one of the leading agents of gastroenteritis and is a major public health concern. In this study, the crystal structures of recombinant RNA-dependent RNA polymerase (RdRp) from murine norovirus-1 (MNV-1) and its complex with 5-fluorouracil (5FU) were determined at 2.5 Å resolution. Crystals with C2 symmetry revealed a dimer with half a dimer in the asymmetrical unit, and the protein exists predominantly as a monomer in solution, in equilibrium with a smaller population of dimers, trimers and hexamers. MNV-1 RdRp exhibited polymerization activity with a right-hand fold typical of polynucleotide polymerases. The metal ion modelled in close proximity to the active site was found to be coordinated tetrahedrally to the carboxyl groups of aspartate clusters. The orientation of 5FU observed in three molecules in the asymmetrical unit was found to be slightly different, but it was stabilized by a network of favourable interactions with the conserved active-site residues Arg185, Asp245, Asp346, Asp347 and Arg395. The information gained on the structural and functional features of MNV-1 RdRp will be helpful in understanding replication of norovirus and in designing novel therapeutic agents against this important pathogen.
منابع مشابه
Structural Bases of Norovirus RNA Dependent RNA Polymerase Inhibition by Novel Suramin-Related Compounds
Noroviruses (NV) are +ssRNA viruses responsible for severe gastroenteritis; no effective vaccines/antivirals are currently available. We previously identified Suramin (9) as a potent inhibitor of NV-RNA dependent RNA polymerase (NV-RdRp). Despite significant in vitro activities versus several pharmacological targets, Suramin clinical use is hampered by pharmacokinetics/toxicity problems. To imp...
متن کاملNaphthalene-sulfonate inhibitors of human norovirus RNA-dependent RNA-polymerase.
Noroviruses are members of the Caliciviridae family of positive sense RNA viruses. In humans Noroviruses cause rapid onset diarrhea and vomiting. Currently Norovirus infection is responsible for 21 million gastroenteritis yearly cases in the USA. Nevertheless, despite the obvious public health and socio-economic relevance, no effective vaccines/antivirals are yet available to treat Norovirus in...
متن کاملSubgenomic promoter recognition by the norovirus RNA-dependent RNA polymerases
The replication enzyme of RNA viruses must preferentially recognize their RNAs in an environment that contains an abundance of cellular RNAs. The factors responsible for specific RNA recognition are not well understood, in part because viral RNA synthesis takes place within enzyme complexes associated with modified cellular membrane compartments. Recombinant RNA-dependent RNA polymerases (RdRps...
متن کاملNonnucleoside inhibitors of norovirus RNA polymerase: scaffolds for rational drug design.
Norovirus (NoV) is the leading cause of acute gastroenteritis worldwide, causing over 200,000 deaths a year. NoV is nonenveloped, with a single-stranded RNA genome, and is primarily transmitted person to person. The viral RNA-dependent RNA polymerase (RdRp) is critical for the production of genomic and subgenomic RNA and is therefore a prime target for antiviral therapies. Using high-throughput...
متن کاملIsolation and Analysis of Rare Norovirus Recombinants from Coinfected Mice Using Drop-Based Microfluidics.
UNLABELLED Human noroviruses (HuNoVs) are positive-sense RNA viruses that can cause severe, highly infectious gastroenteritis. HuNoV outbreaks are frequently associated with recombination between circulating strains. Strain genotyping and phylogenetic analyses show that noroviruses often recombine in a highly conserved region near the junction of the viral polyprotein (open reading frame 1 [ORF...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Virology
دوره 426 2 شماره
صفحات -
تاریخ انتشار 2011